Orientation and density control of bispecific anti-HER2 antibody on functionalized carbon nanotubes for amplifying effective binding reactivity to cancer cells.

نویسندگان

  • Hye-In Kim
  • Dobeen Hwang
  • Su-Ji Jeon
  • Sangyeop Lee
  • Jung Hyun Park
  • DaBin Yim
  • Jin-Kyoung Yang
  • Homan Kang
  • Jaebum Choo
  • Yoon-Sik Lee
  • Junho Chung
  • Jong-Ho Kim
چکیده

Nanomaterial bioconjugates have gained unabated interest in the field of sensing, imaging and therapy. As a conjugation process significantly affects the biological functions of proteins, it is crucial to attach them to nanomaterials with control over their orientation and the nanomaterial-to-protein ratio in order to amplify the binding efficiency of nanomaterial bioconjugates to targets. Here, we describe a targeting nanomaterial platform utilizing carbon nanotubes functionalized with a cotinine-modified dextran polymer and a bispecific anti-HER2 × cotinine tandem antibody. This new approach provides an effective control over antibody orientation and density on the surface of carbon nanotubes through site-specific binding between the anti-cotinine domain of the bispecific tandem antibody and the cotinine group of the functionalized carbon nanotubes. The developed synthetic carbon nanotube/bispecific tandem antibody conjugates (denoted as SNAs) show an effective binding affinity against HER2 that is three orders of magnitude higher than that of the carbon nanotubes bearing a randomly conjugated tandem antibody prepared by carbodiimide chemistry. As the density of a tandem antibody on SNAs increases, their effective binding affinity to HER2 increases as well. SNAs exhibit strong resonance Raman signals for signal transduction, and are successfully applied to the selective detection of HER2-overexpressing cancer cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of hydralazine drug adsorption on functionalized single-walled carbon nanotubes by density functional theory (DFT) method

Background: In recent years, advances in nanotechnology presents opportunities to overcome limitations in targeted drug delivery. Nano drug carriers have the ability to change the pharmacokinetics of drugs and can improve efficacy and reduce side effects. The objective of the present work is to study the interaction of Hydralazine with functionalized carbon nanotubes by performing density funct...

متن کامل

A DFT study of interaction of folic acid drug on functionalized single-walled Carbon Nanotubes

In this work, the structural and electronic properties of folic acid molecule on functionalized (7,0)zigzag single-walled carbon nanotube was studied in gas phase on the basis of density functionaltheory (DFT). Furthermore, covalent interaction of folic acid with single-walled carbon nanotube wasinvestigated and its quantum molecular descriptors and binding energies were calculated. The DFTB3LY...

متن کامل

Density Functional Theory Calculations of Functionalized Carbon Nanotubes with Metformin as Vehicles for Drug Delivery

Drug delivery by nanomaterials is an active emergent research area and CNTs draws considerable potential application owing to its unique quasi one-dimensional structure and electronic properties. Single walled carbon nanotubes and carbon fullerenes can be used in drug delivery due to their mechanical and chemical stability. The past few years, increasing attention by several reputed groups has ...

متن کامل

Polyclonal Antibody against Different Extracellular Subdomains of HER2 Induces Tumor Growth Inhibition in vitro

Background: Human epidermal growth factor receptor 2 (HER2) has a crucial role in several malignancies. The extracellular domain of HER2 (HER2-ECD) has been extensively employed as an important target in passive and active immunotherapy. Isolated recombinant prokaryotic HER2-ECD subdomains were previously found to be ineffective in inducing anti-tumor antibody response. Objective: To employ rec...

متن کامل

Synthesizing and Characterizing Functionalized Short Multiwall Carbon Nanotubes with Folate, Magnetite and Polyethylene Glycol as Multitargeted Nanocarrier of Anti-cancer Drugs

Multifunctional nanomaterials showed graet advantages in drug delivery. Folic acid (FA) binding protein, a glycosyl phosphatidyl inositol anchored cell surface receptor for folate, is overexpressed in several human tumors, whereas it is highly restricted in normal tissues. Therefore, in this study, FA, polyethylene glycol (PEG), and Fe3O4 nanoparticles multifunctionalized short multiwall carbon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 7 14  شماره 

صفحات  -

تاریخ انتشار 2015